Fast scanning calorimetry for vapor pressure determination above solids and liquids

Aleksey V. Buzyurov,^{*a**} Ruslan N. Nagrimanov,^{*a*} Dzmitry H. Zaitsau,^{*b,c*} Timur A. Mukhametzyanov,^{*a*} Boris N. Solomonov,^{*a*} Amir Abdelaziz,^{*c,d*} Christoph Schick^{*a,c,d*}

^a Department of Physical Chemistry, Kazan Federal University, 420008, Kazan, Russia
^b Department of Physical Chemistry, University of Rostock, 18059 Rostock, Germany
^c Faculty of Interdisciplinary Research, Department Life, Light & Matter, Competence Centre
^oCALOR, University of Rostock, 18051 Rostock, Germany
^d Institute of Physics, University of Rostock, 18059, Rostock, Germany

Recently, a thermogravimetric method, based on fast scanning calorimetry (FSC) and a laminar purge gas flow above the sample, was applied to measure the vapor pressures of several ionic liquids and heterocyclic compounds. Compared to conventional techniques, the FSC method utilizes micrometer-sized samples with a high surface-area-to-volume ratio allowing for increasing evaporation rates and avoiding decomposition at elevated temperatures. In the presented work, an adaption of the basic ideas of the original FSC method to a situation with a stagnant purge gas phase is described. Such experimental conditions can be realized with the widely available commercial fast scanning chip calorimeters Flash DSC 1 and Flash DSC 2+ (Mettler Toledo, Switzerland). The validity of the developed procedure was checked by comparing the vapor pressures determined in this work for several polyaromatic, heteroaromatic, and long-chain compounds with reliable vapor pressure data available in the literature. The results of the comparison show that the commercial instruments can be used without additional technical changes as a source of comprehensive and internally consistent information about the energy of phase transitions.